Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.469
Filtrar
1.
BMC Oral Health ; 24(1): 458, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622548

RESUMO

BACKGROUND: Various methods, chemical and physical, disinfect dental impressions. Common chemicals include 1% Sodium Hypochlorite and 2% glutaraldehyde, while UV radiation is a prevalent physical method. Few studies compare their effects on dimensional stability in polyether impressions. This study aims to assess such stability using different disinfection methods. Therefore, this study was planned to evaluate the dimensional stability of polyether impression material using different disinfection methods. METHODS: This in vitro study compared the effects of chemical disinfectants (1% Sodium Hypochlorite and 2% glutaraldehyde) and UV irradiation on the dimensional stability of polyether impression material. Groups A, B, C, and D, each with ten samples (N = 10), were studied. Group A was untreated (control). Group B was treated with 2% glutaraldehyde for 20 min, Group C with 1% Sodium Hypochlorite for 20 min, and Group D with UV rays for 20 min. A pilot milling machine drill was used to make four parallel holes labeled A, B, C, and D in the anterior and premolar regions from right to left. After sequential drilling, four implant analogs were positioned using a surveyor for accuracy. Ten open-tray polyether impressions were made and treated as described in the groups, followed by pouring the corresponding casts. Distortion values for each disinfection method were measured using a coordinate measuring machine capable of recording on the X- and Y-axes. RESULTS: A comprehensive analysis was conducted using the one-way ANOVA test for distinct groups labeled A, B, C, and D, revealing significant differences in the mean distances for X1, X2, X4, X5, and X6 among the groups, with p-values ranging from 0.001 to 0.000. However, no significant differences were observed in X3. Notably, mean distances for the Y variables exhibited substantial differences among the groups, emphasizing parameter variations, with p-values ranging from 0.000 to 0.033. The results compared the four groups using the one-way ANOVA test, revealing statistically significant distance differences for most X and Y variables, except for X3 and Y4. Similarly, post-hoc Tukey's tests provided specific pairwise comparisons, underlining the distinctions between group C and the others in the mean and deviation distances for various variables on both the X- and Y-axes. CONCLUSIONS: This study found that disinfection with 1% sodium hypochlorite or UV rays for 20 min maintained dimensional stability in polyether impressions.


Assuntos
Desinfetantes , Desinfecção , Humanos , Desinfecção/métodos , Glutaral , Hipoclorito de Sódio , Materiais para Moldagem Odontológica , Técnica de Moldagem Odontológica
2.
Acta Vet Scand ; 66(1): 18, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622748

RESUMO

BACKGROUND: Benzalkonium chloride (BAC) is a quaternary ammonium compound (QAC), that can be found in a wide variety of household products-from disinfectants to medicaments and home fragrances-but also professional products. In pets, cats have long been reported as more sensitive than dogs to QACs; in fact, signs of irritation such as oral ulcerations, stomatitis and pharyngitis can be observed after contact with concentrations of 2% or lower. In a review of 245 cases of BAC exposure in cats, reported by the Veterinary Poisons Information Service (United Kingdom) only 1.2% of the cases died or were euthanized. Nevertheless, BAC toxidromes in cats can result in transitory CNS and respiratory distress, as well as severe mucosal and cutaneous lesions. Currently, only a few reports are available concerning BAC poisoning in this species. CASE PRESENTATION: A 4 month-old kitten presented with severe glossitis, lameness in the hindlimbs and episodes of vomiting and diarrhoea. The cause was unknown until the owners reported use of a BAC-containing mould remover (5%) 4 days later. The patient developed severe oral burns requiring a pharyngeal tube for feeding and severe cutaneous chemical burns. The kitten was managed with supportive therapy and required hospitalization for 10 days. The symptoms disappeared completely 3 weeks after exposure. CONCLUSIONS: BAC is a very common compound contained in several household and professional products but, to the best of our knowledge, no previous case had been reported in Italy. We hope that this report will help raise awareness on the hazards of BAC products for cats in both domestic and work contexts.


Assuntos
Compostos de Benzalcônio , Desinfetantes , Gatos , Animais , Feminino , Cães , Compostos de Benzalcônio/toxicidade , Compostos de Amônio Quaternário , Itália
3.
Environ Sci Technol ; 58(15): 6552-6563, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38571383

RESUMO

Extracellular polymeric substances (EPS) ubiquitously encapsulate microbes and play crucial roles in various environmental processes. However, understanding their complex interactions with dynamic bacterial behaviors, especially during the disinfection process, remains very limited. In this work, we investigated the impact of EPS on bacterial disinfection kinetics by developing a permanent EPS removal strategy. We genetically disrupted the synthesis of exopolysaccharides, the structural components of EPS, in Pseudomonas aeruginosa, a well-known EPS-producing opportunistic pathogen found in diverse environments, creating an EPS-deficient strain. This method ensured a lasting absence of EPS while maintaining bacterial integrity and viability, allowing for real-time in situ investigations of the roles of EPS in disinfection. Our findings indicate that removing EPS from bacteria substantially lowered their susceptibility threshold to disinfectants such as ozone, chloramine B, and free chlorine. This removal also substantially accelerated disinfection kinetics, shortened the resistance time, and increased disinfection efficiency, thereby enhancing the overall bactericidal effect. The absence of EPS was found to enhance bacterial motility and increase bacterial cell vulnerability to disinfectants, resulting in greater membrane damage and intensified reactive oxygen species (ROS) production upon exposure to disinfectants. These insights highlight the central role of EPS in bacterial defenses and offer promising implications for developing more effective disinfection strategies.


Assuntos
Desinfetantes , Desinfecção , Desinfecção/métodos , Matriz Extracelular de Substâncias Poliméricas , Desinfetantes/farmacologia , Cloro/farmacologia , Cinética
4.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38573833

RESUMO

In the 1940s and 1950s, researchers seeking safe and novel ways to eliminate airborne pathogens from enclosed spaces, investigated glycol vapours as a method of disinfection. More recently, the COVID-19 pandemic highlighted the need for a non-toxic aerial disinfectant that can be used in the presence of people. This scoping review is intended to analyse the early and more recent literature on glycol disinfection, scrutinizing the methodologies used, and to determine if the use of glycols as modern-day disinfectants is justified PRISMA-ScR guidelines were used to assess the 749 articles retrieved from the Web of Science platform, with 46 articles retained after the search strategy was applied. Early studies generally demonstrated good disinfection capabilities against airborne bacteria and viruses, particularly with propylene glycol (PG) vapour. Vapour pressure, relative humidity, and glycol concentration were found to be important factors affecting the efficacy of glycol vapours. Contact times depended mainly on the glycol application method (i.e. aerosolization or liquid formulation), although information on how glycol efficacy is impacted by contact time is limited. Triethylene glycol (TEG) is deemed to have low toxicity, carcinogenicity, and mutagenicity and is registered for use in air sanitization and deodorization by the US Environmental Protection Agency. Glycols are also used in liquid formulations for their antimicrobial activity against a wide range of microorganisms, although when used as a non-active excipient in products, their contribution to antimicrobial efficacy is rarely assessed. The appropriate use of liquid glycol-containing formulations was found to positively impact the antimicrobial capabilities of disinfectants when used at temperatures <0, food preservatives, and dental medicaments. Providing modern delivery technology can accurately control environmental conditions, the use of aerosolized glycol formulations should lead to successful disinfection, aiding infection prevention, and control regimens.


Assuntos
Anti-Infecciosos , Desinfetantes , Humanos , Pandemias/prevenção & controle , Desinfetantes/farmacologia , Desinfecção/métodos , Anti-Infecciosos/farmacologia , Propilenoglicol/farmacologia , Gases
5.
Environ Sci Technol ; 58(15): 6793-6803, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574343

RESUMO

Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.


Assuntos
Desinfetantes , Purificação da Água , Desinfecção , Genes Bacterianos , Bactérias/genética , Antibacterianos/farmacologia , Desinfetantes/farmacologia , Plasmídeos/genética
6.
J Water Health ; 22(3): 601-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38557574

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.


Assuntos
COVID-19 , Desinfetantes , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Ácido Hipocloroso/farmacologia , Água , Desinfetantes/farmacologia
7.
Emerg Infect Dis ; 30(13): S41-S48, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38561639

RESUMO

Serratia marcescens is an environmental gram-negative bacterium that causes invasive disease in rare cases. During 2020-2022, an outbreak of 21 invasive Serratia infections occurred in a prison in California, USA. Most (95%) patients had a history of recent injection drug use (IDU). We performed whole-genome sequencing and found isolates from 8 patients and 2 pieces of IDU equipment were closely related. We also identified social interactions among patients. We recovered S. marcescens from multiple environmental samples throughout the prison, including personal containers storing Cell Block 64 (CB64), a quaternary ammonium disinfectant solution. CB64 preparation and storage conditions were suboptimal for S. marcescens disinfection. The outbreak was likely caused by contaminated CB64 and propagated by shared IDU equipment and social connections. Ensuring appropriate preparation, storage, and availability of disinfectants and enacting interventions to counteract disease spread through IDU can reduce risks for invasive Serratia infections in California prisons.


Assuntos
Infecção Hospitalar , Desinfetantes , Prisioneiros , Infecções por Serratia , Humanos , Serratia marcescens/genética , Infecções por Serratia/epidemiologia , Prisões , Infecção Hospitalar/microbiologia , Surtos de Doenças , California/epidemiologia
8.
J Chromatogr A ; 1721: 464812, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38569297

RESUMO

In this work, a novel and efficient approach for sodium hypochlorite analysis is proposed via phase-conversion headspace technique, which is based on the gas chromatography (GC) detection of generated carbon dioxide (CO2) from the redox reaction of sodium hypochlorite with sodium oxalate. The data obtained by the proposed method suggest the high detecting precision and accuracy. In addition, the method has low detection limits (limit of quantification (LOQ) = 0.24 µg/mL), and the recoveries of added standard ranged from 98.33 to 101.27 %. The proposed phase-conversion headspace technique is efficient and automated, thereby offering an efficient strategy for highly efficient analysis of sodium hypochlorite and related products.


Assuntos
Desinfetantes , Hipoclorito de Sódio , Desinfetantes/análise , Ácido Hipocloroso , Cromatografia Gasosa/métodos , Dióxido de Carbono/análise
9.
Antimicrob Resist Infect Control ; 13(1): 44, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627805

RESUMO

BACKGROUND: Antiseptics, disinfectants, and hand hygiene products can be contaminated with bacteria and cause healthcare-associated infections, which are underreported from low- and middle-income countries. To better understand the user-related risk factors, we conducted a knowledge, awareness, and practice survey among hospital staff in sub-Saharan Africa. METHODS: Self-administered questionnaire distributed among healthcare workers in three tertiary care hospitals (Burkina Faso, Benin, Democratic Republic of the Congo). RESULTS: 617 healthcare workers (85.3% (para)medical and 14.7% auxiliary staff) participated. Less than half (45.5%) had been trained in Infection Prevention & Control (IPC), and only 15.7% were trained < 1 year ago. Near two-thirds (64.2%) preferred liquid soap for hand hygiene, versus 33.1% for alcohol-based hand rub (ABHR). Most (58.3%) expressed confidence in the locally available products. Knowledge of product categories, storage conditions and shelf-life was inadequate: eosin was considered as an antiseptic (47.5% of (para)medical staff), the shelf life and storage conditions (non-transparent container) of freshly prepared chlorine 0.5% were known by only 42.6% and 34.8% of participants, respectively. Approximately one-third of participants approved using tap water for preparation of chlorine 0.5% and liquid soap. Most participants (> 80%) disapproved recycling soft-drink bottles as liquid soap containers. Nearly two-thirds (65.0%) declared that bacteria may be resistant to and survive in ABHR, versus 51.0% and 37.4% for povidone iodine and chlorine 0.5%, respectively. Depicted risk practices (n = 4) were ignored by 30 to 40% of participants: they included touching the rim or content of stock containers with compresses or small containers, storing of cotton balls soaked in an antiseptic, and hand-touching the spout of pump dispenser. Filling containers by topping-up was considered good practice by 18.3% of participants. Half (52.1%) of participants acknowledged indefinite reuse of containers. Besides small differences, the findings were similar across the study sites and professional groups. Among IPC-trained staff, proportions recognizing all 4 risk practices were higher compared to non-trained staff (35.9% versus 23.8%, p < 0.0001). CONCLUSIONS: The present findings can guide tailored training and IPC implementation at the healthcare facility and national levels, and sensitize stakeholders' and funders' interest.


Assuntos
Anti-Infecciosos Locais , Desinfetantes , Higiene das Mãos , Humanos , Estudos Transversais , Centros de Atenção Terciária , Benin , Burkina Faso , Cloro , República Democrática do Congo , Sabões , Etanol , Recursos Humanos em Hospital , Bactérias
10.
J Infect Dev Ctries ; 18(3): 362-370, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635617

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is caused by the SARS-CoV-2 virus. It has impacted millions of individuals and caused numerous casualties. Consequently, there was a race to develop vaccines against the virus. However, there has been unequal vaccine distribution among nations, and concerns over side effects have resulted in vaccine hesitancy, reducing vaccination rates in many countries and hindering pandemic eradication. Preventive measures like well-fitted masks, frequent hand washing, alcohol-based sanitizers, and maintaining physical distance remain crucial to curb SARS-CoV-2 transmission. This study examined the adoption of these preventive measures among sellers in the Beni Mellal region of Morocco. RESULTS: We analyzed a cohort of 700 merchants, including 40.28% middle-aged males. Among them, 53% (371/700) wore masks, with 61.08% using medical masks, and 44.05% correctly positioned their masks. Additionally, 20.29% (142/700) carried disinfectants, of whom 117 used them at least once in 30 minutes. However, physical distancing was lacking in 78.29% of sellers, particularly among young and middle-aged males (18% and 31.86%, respectively). More than 80% of the vendors had frequent physical contact with others, primarily through hands. Surprisingly, only 1% (7/700) of participants combined the following preventive measures: using a disinfectant at least once, wearing a well-fitted mask, practicing physical distancing, and avoiding contact with others. Two individuals (0.29%) refrained from touching any surfaces. Money accounted for 76.57% of commonly touched surfaces; yet only 0.29% adhered to the preventive measures while handling money. Furthermore, a majority of individuals (92.14%, 645/700) were observed touching their faces at least once.


Assuntos
COVID-19 , Desinfetantes , Masculino , Pessoa de Meia-Idade , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Marrocos/epidemiologia , Máscaras , Pandemias/prevenção & controle
11.
Sci Total Environ ; 926: 171995, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547977

RESUMO

Dichloroacetonitrile (DCAN) is an emerging disinfection by-product (DBP) that is widespread in drinking water. However, the pathway for DCAN formation from aromatic amino acids remains unclear, leading to a lack of an understanding of its explicit fate during chloramination. In this study, we investigated the specific formation mechanism of DCAN during the chloramination of phenylalanine based on reaction kinetics and chemical thermodynamics. The reason for differences between aldehyde and decarboxylation pathways was explained, and kinetic parameters of the pathways were obtained through quantum chemistry calculations. The results showed that the reaction rate constant of the rate-limiting step of the aldehyde pathway with 1.9 × 10-11 s-1 was significantly higher than that of decarboxylation (3.6 × 10-16 s-1 M-1), suggesting that the aldehyde pathway is the main reaction pathway for DCAN formation during the chloramination of phenylalanine to produce DCAN. Subsequently, theoretical calculations were performed to elucidate the effect of pH on the formation mechanism, which aligned well with the experimental results. Dehydrohalogenation was found to be the rate-limiting step under acidic conditions with reaction rate constants higher than those of the rate-limiting step (expulsion of amines) under neutral conditions, increasing the rate of DCAN formation. This study highlights the differences in DCAN formation between the decarboxylation and aldehyde pathways during the chloramination of precursors at both molecular and kinetic levels, contributing to a comprehensive understanding of the reaction mechanisms by which aromatic free amino acids generate DCAN.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Fenilalanina , Halogenação , Purificação da Água/métodos , Desinfecção , Acetonitrilas/química , Aldeídos , Poluentes Químicos da Água/análise
12.
J Colloid Interface Sci ; 665: 634-642, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552580

RESUMO

Pathogen contamination in drinking water sources causes waterborne infectious diseases, seriously threatening human health. Nowadays, stimuli-responsive self-propelled nanomotors are appealing therapeutic agents for antibacterial therapy in vivo. However, achieving water disinfection using these nanobots is still a great challenge. Herein, we report on prebiotic galactooligosaccharide-based nanomotors for sunlight-regulated water disinfection. The nanomotors can utilize galactooligosaccharide-based N-nitrosamines as sunlight-responsive fuels for the spontaneous production of antibacterial nitric oxide. Such a solar-to-chemical energy conversion would power the nanomotors for self-diffusiophoresis, which could promote the diffusion of the nanomotors in water and their penetration in the biofilm, significantly enhancing the inhibition and elimination of the pathogens and their biofilms in aquatic environments. After water treatments, the prebiotic-based residual disinfectants can be selectively utilized by beneficial bacteria to effectively relieve safety risks to the environment and human health. The low-energy-cost, green and potent antibacterial nanobots show promising potential in water disinfection.


Assuntos
Desinfetantes , Humanos , Desinfetantes/farmacologia , Desinfecção , Luz Solar , Biofilmes , Antibacterianos/farmacologia
13.
J Occup Environ Hyg ; 21(4): 259-269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447033

RESUMO

Legionella pneumophila, the leading cause of Legionnaires' disease in the United States, is found in lakes, ponds, and streams but poses a health risk when it grows in building water systems. The growth of L. pneumophila in hot water systems of healthcare facilities poses a significant risk to patients, staff, and visitors. Hospitals and long-term care facilities account for 76% of reported Legionnaires' disease cases with mortality rates of 25%. Controlling L. pneumophila growth in hot water systems serving healthcare and hospitality buildings is currently achieved primarily by adding oxidizing chemical disinfectants. Chemical oxidants generate disinfection byproducts and can accelerate corrosion of premise plumbing materials and equipment. Alternative control methods that do not generate hazardous disinfection byproducts or accelerate corrosion are needed. L. pneumophila is an obligate aerobe that cannot sustain cellular respiration, amplify, or remain culturable when dissolved oxygen (DO) concentrations are too low (< 0.3 mg/L). An alternative method of controlling L. pneumophila growth by reducing DO levels in a hot water model system using a gas transfer membrane contactor was evaluated. A hot water model system was constructed and inoculated with L. pneumophila at DO concentrations above 0.5 mg/L. Once the model system was colonized, DO levels were incrementally reduced. Water samples were collected each week to evaluate the effect of reducing dissolved oxygen levels when all other conditions favored Legionella amplification. At DO concentrations below 0.3 mg/L, L. pneumophila concentrations were reduced by 1-log over 7 days. Under conditions in the hot water model system, at favorable temperatures and with no residual chlorine disinfectant, L. pneumophila concentrations were reduced by 1-log, indicating growth inhibition by reducing DO levels as the sole control measure. In sections of the model system where DO levels were not lowered L. pneumophila continued to grow. Reducing dissolved oxygen levels in hot water systems of healthcare and other large buildings to control L. pneumophila could also lower the risk of supplemental chemical treatment methods currently in use.


Assuntos
Desinfetantes , Legionella pneumophila , Legionella , Doença dos Legionários , Humanos , Doença dos Legionários/prevenção & controle , Abastecimento de Água , Engenharia Sanitária , Desinfetantes/farmacologia , Água/farmacologia , Microbiologia da Água , Temperatura Alta
14.
J Oleo Sci ; 73(4): 437-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556278

RESUMO

Polyhexamethylene guanidine (PHMG) is a guanidine-based chemical that has long been used as an antimicrobial agent. However, recently raised concerns regarding the pulmonary toxicity of PHMG in humans and aquatic organisms have led to research in this area. Along with PHMG, there are concerns about the safety of non-guanidine 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) in human lungs; however, the safety of such chemicals can be affected by many factors, and it is difficult to rationalize their toxicity. In this study, we investigated the adsorption characteristics of CMIT/ MIT on a model pulmonary surfactant (lung surfactant, LS) using a Langmuir trough attached to a fluorescence microscope. Analysis of the π-A isotherms and lipid raft morphology revealed that CMIT/MIT exhibited minimal adsorption onto the LS monolayer deposited at the air/water interface. Meanwhile, PHMG showed clear signs of adsorption to LS, as manifested by the acceleration of the L o phase growth with increasing surface pressure. Consequently, in the presence of CMIT/MIT, the interfacial properties of the model LS monolayer exhibited significantly fewer changes than PHMG.


Assuntos
Anti-Infecciosos , Desinfetantes , Surfactantes Pulmonares , Humanos , Adsorção , Pulmão , Guanidinas/química , Guanidina
15.
Environ Sci Technol ; 58(14): 6236-6249, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38534032

RESUMO

The COVID-19 pandemic has led to significantly increased human exposure to the widely used disinfectants quaternary ammonium compounds (QACs). Xenobiotic metabolism serves a critical role in the clearance of environmental molecules, yet limited data are available on the routes of QAC metabolism or metabolite levels in humans. To address this gap and to advance QAC biomonitoring capabilities, we analyzed 19 commonly used QACs and their phase I metabolites by liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS). In vitro generation of QAC metabolites by human liver microsomes produced a series of oxidized metabolites, with metabolism generally occurring on the alkyl chain group, as supported by MS/MS fragmentation. Discernible trends were observed in the gas-phase IM behavior of QAC metabolites, which, despite their increased mass, displayed smaller collision cross-section (CCS) values than those of their respective parent compounds. We then constructed a multidimensional reference SQLite database consisting of m/z, CCS, retention time (rt), and MS/MS spectra for 19 parent QACs and 81 QAC metabolites. Using this database, we confidently identified 13 parent QACs and 35 metabolites in de-identified human fecal samples. This is the first study to integrate in vitro metabolite biosynthesis with LC-IM-MS/MS for the simultaneous monitoring of parent QACs and their metabolites in humans.


Assuntos
Desinfetantes , Compostos de Amônio Quaternário , Humanos , Compostos de Amônio Quaternário/análise , Compostos de Amônio Quaternário/química , Espectrometria de Massas em Tandem/métodos , Pandemias , Cromatografia Líquida , Fígado
16.
Huan Jing Ke Xue ; 45(3): 1561-1576, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471870

RESUMO

At the time when water resources are in short supply,wastewater recycling is both an important environmental protection strategy and also a resource strategy. Disinfection is essential to ensure the biological safety of reclaimed wastewater by killing pathogens and preventing the spread of waterborne diseases. However,the disinfection process could inevitably produce toxic disinfection byproducts(DBPs)due to the reaction between the disinfectants and wastewater organic matters. Regarding wastewater DBPs,this study reviewed their identification methods,formation conditions(including precursors,the effect of water quality,disinfectants,and operational parameters on DBPs),and control methods(including source control,process control,and end control). In addition,future research trends of wastewater DBPs were discussed.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Águas Residuárias , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Halogenação
17.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474298

RESUMO

The rapid increase in the antibiotic resistance of microorganisms, capable of causing diseases in humans as destroying cultural heritage sites, is a great challenge for modern science. In this regard, it is necessary to develop fundamentally novel and highly active compounds. In this study, a series of N4-alkylcytidines, including 5- and 6-methylcytidine derivatives, with extended alkyl substituents, were obtained in order to develop a new generation of antibacterial and antifungal biocides based on nucleoside derivatives. It has been shown that N4-alkyl 5- or 6-methylcytidines effectively inhibit the growth of molds, isolated from the paintings in the halls of the Ancient Russian Paintings of the State Tretyakov Gallery, Russia, Moscow. The novel compounds showed activity similar to antiseptics commonly used to protect works of art, such as benzalkonium chloride, to which a number of microorganisms have acquired resistance. It was also shown that the activity of N4-alkylcytidines is comparable to that of some antibiotics used in medicine to fight Gram-positive bacteria, including resistant strains of Staphylococcus aureus and Mycobacterium smegmatis. N4-dodecyl-5- and 6-methylcytidines turned out to be the best. This compound seems promising for expanding the palette of antiseptics used in painting, since quite often the destruction of painting materials is caused by joint fungi and bacteria infection.


Assuntos
Anti-Infecciosos Locais , Desinfetantes , Pinturas , Humanos , Desinfetantes/farmacologia , Bactérias , Fungos , Antibacterianos
18.
Sci Total Environ ; 922: 171317, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428610

RESUMO

Sequential utilization of ozone (O3) and biological activated carbon (BAC) followed by UV/chlor(am)ine advanced oxidation process (AOP) has drawn attention in water reuse. However, the formation of disinfection by-products (DBPs) in this process is less evaluated. This study investigated the DBP formation and the relevant toxicity during the O3-BAC-UV/chlor(am)ine treatment of sand-filtered municipal secondary effluent. DBP formation in UV/chlorine and UV/dichloramine (NHCl2) processes were compared, where the impact of key operational parameters (e.g., UV wavelength, pH) on DBP formation were comprehensively evaluated. O3-BAC significantly reduced DBP formation potential (DBPFP) (58.2 %). Compared to UV/chlorine AOP, UV/NHCl2 AOP reduced DBP formation by 29.7 % in short-time treatment, while insignificantly impacting on DBPFP (p > 0.05). UV/NHCl2 AOP also led to lower calculated cytotoxicity (67.7 %) and genotoxicity (55.9 %) of DBPs compared to UV/chlorine AOP. Compared to 254 nm UV light, the utilization of 285 nm UV light decreased the formation of DBPs in wastewater treated with the UV/chlorine AOP and UV/NHCl2 AOP by 31.3 % and 19.2 %, respectively. However, the cytotoxicity and genotoxicity in UV/NHCl2 AOP using 285 nm UV light increased by 83.4 % and 58.5 %, respectively, compared to 254 nm. The concentration of DBPs formed in the UV/NHCl2 AOP at pH 8 was 54.3 % lower than that at pH 7, suggesting a better control of DBPs at alkaline condition. In the presence of bromide, UV/NHCl2 AOP tended to generate more brominated DBPs than UV/chlorine AOP. Overall, UV/NHCl2 AOP resulted in lower concentration and toxicity of DBPs compared to UV/chlorine AOP.


Assuntos
Desinfetantes , Ozônio , Poluentes Químicos da Água , Purificação da Água , Desinfecção/métodos , Carvão Vegetal , Águas Residuárias , Cloro , Raios Ultravioleta , Purificação da Água/métodos , Halogenação , Poluentes Químicos da Água/análise
19.
J Environ Manage ; 355: 120493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452624

RESUMO

The present study aimed to narrow such gaps by applying nonlinear differential equations to biostability in drinking water. Biostability results from the integrated dynamics of nutrients and disinfectants. The linear dynamics of biostability have been well studied, while there remain knowledge gaps concerning nonlinear effects. The nonlinear effects are explained by phase plots for specific scenarios in a drinking water system, including continuous nutrient release, flush exchange with the adjacent environment, periodic pulse disinfection, and periodic biofilm development. The main conclusions are, (1) The correlations between the microbial community and nutrients go through phases of linear, nonlinear, and chaotic dynamics. Disinfection breaks the chaotic phase and returns the system to the linear phase, increasing the microbial growth potential. (2) Post-disinfection after multiple microbial peaks produced via metabolism can increase disinfection efficiency and decrease the risks associated with disinfectant byproduct risks. This can provide guidelines for optimizing the disinfection strategy, according to the long-term water safety target or a short management. Limited disinfection and ultimate disinfection may be more effective and have low chemical risk, facing longer stagnant conditions. (3) Periodic biofilm formation and biofilm detachment increase the possibility of uncertainty in the chaotic phase. For future study, nonlinear differential equation models can accordingly be applied at the molecular and ecological levels to further explore more nonlinear regulation mechanisms.


Assuntos
Desinfetantes , Água Potável , Purificação da Água , Cloro/química , Cloro/farmacologia , Desinfecção/métodos , Biofilmes , Purificação da Água/métodos
20.
AORN J ; 119(4): 275-282, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536400

RESUMO

There are several steps involved when performing high-level disinfection (HLD) of semicritical devices. The recently updated AORN "Guideline for manual high-level disinfection" provides perioperative nurses with evidence-based best practices for performing safe and effective HLD of reusable semicritical items. The guideline also addresses preventing injury to patients and health care workers associated with the handling of high-level disinfectants. This article provides an overview of the guideline and discusses recommendations for selection of a processing method, sterile processing areas, preparation of items for HLD, preparation of high-level disinfectants, manual HLD, drying and storage of items after HLD, and processing records. It also includes a scenario that illustrates specific concerns related to performing quality tests on high-level disinfectant solutions. Perioperative nurses should review the guideline in its entirety and apply the recommendations when performing manual HLD.


Assuntos
Desinfetantes , Desinfecção , Humanos , Desinfecção/métodos , Pessoal de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...